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We investigate phase synchronization between two identical or detuned response oscillators coupled to a
slightly different drive oscillator. Our result is that phase synchronization can occur between response oscil-
lators when they are driven by correlatéolt not identical inputs from the drive oscillator. We call this
phenomenon generalized phase synchronization and clarify its characteristics using Lyapunov exponents and
phase difference plots.
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Synchronization has been of much interest since Huygen&stablished in the drive response and the response-response
first description of it in two pendulum clocks on a wll]. systems differ from each othandhow they develop to GS
The report that synchronization can be observed even in cha- In this paper, we investigate transition to PS in unidirec-
otic systems gave new rise to scientific attention to the phetionally coupled chaotic oscillators driven by two different
nomenon[2,3]. Over the past decade, synchronization intypes of chaotic signal. We demonstrate that PS in the
coupled chaotic oscillators has been intensely investigatetesponse-response system is induced by PS in the drive-
for the understanding of its fundamental role in coupled nonfesponse system when the driving signals are identical. How-
linear systems and the possibility of applications in variousever, we find that when correlated but not identical driving
fields [4—8]. What characterizes synchronization is the con-signals are used, PS is established in the response-response
vergence of the distance between the state variables of driveystem but not in the drive-response system. We call this
and response systems to zero due to weak interaction. Sespecial PS phenomendggeneralized phase synchronization
eral different types of synchronization, i.e., phase synchroni¢GPS and discuss its relation with GS.
zation (P9 [9-11], lag synchronizatioriLS) [12], complete How to define the phase for a chaotic system is an impor-
synchronization(CS [3], and generalized synchronization tant issue and an active field of investigation in nonlinear
(GS) [13] have been observed in coupled chaotic systems. dynamics. So far several methods, e.g., using phase space

While CS, PS, and LS are observed in identical or slightlyprojection [17,9], Hilbert transformation[8], and wavelet
detuned system&lue to parameter mismaicf2,3,9, GS is  transformatiorj16], etc., have been suggested and there have
observed in coupled oscillators with different dynaniit3].  been done extensive investigations based on these methods.
When chaotic signals of a drive oscillator are fed into re-The method using phase space projection is the most sim-
sponse oscillators, above a critical coupling the response oglest one to define the phase indgter oscillator and it en-
cillators lose their exponential instability in the transverseables us to use analytic treatment in analyzing the phase
direction and their state variables converge to the saméynamics. We follow this approach. The phase is defined by
value. This convergence is the main character of GS. Sinche simple geometric functiond; =arctany; /x;), where i
the attractors of response oscillators converge to the santel for a drive oscillator and=2,3 for response oscillators.
image in the GS regime, GS implies the emergence of a To demonstrate the conventional PS phenomenon estab-
functional relation between drive and response oscillatorgshed in the drive-response, we consider the unidirectionally
such that; = H(x,) [13], wherex, andx, are the state vec- coupled Rssler oscillators with slight parameter mismatch
tors of drive and response oscillators, respectively. (see the caption of Fig.)1The identical signay, from drive

In mutually coupled chaotic oscillators, there have beerpscillator is fed into two responses and the phase difference
extensive investigations on the whole synchronization phebetween drive and response oscillators can be written as fol-
nomena(PS, LS, and CBand various transition scenarios lows [9,10]:
clarified[9,12]. Most of the investigations in unidirectionally
coupled chaotic oscillators have been concentrated on GS . eR;
transition and its applications. Also, some trials have been bu=Aw— 5 oosingy+ &), 1)
made to unveil the relation between PS and GS: Pagtit. K
[14] experimentally studied PS in unidirectionally coupled
analog computer and Zheng and FHi] theoretically dem-  Whereg,= 61— 6 andRy= \xj +yj andk=2,3. HereAw
onstrated that GS can be weaker than PS depending on p&-the frequency mismatch between drive and response oscil-
rameter mismatchs. Nevertheless, there remain unclarifie@tors andé(t) is the fast fluctuating term which plays the
questions concerning to PS in unidirectionally coupled charole of effective noise. It is known that the above dynamics is
otic oscillators. Particular questions drew PS phenomena governed by type-I intermittency in the presence of noise and

that PS is established when the channel width is deeper than
the maximum of the effective noisgt) [11]. Accordingly,
*Electronic address: whkye@phys.paichai.ac.kr we can estimate the onset point of PS by considering the

"Electronic address: chmkim@mail.paichai.ac.kr fixed point condition:¢p;,=0. It leads to the equatiorh

1063-651X/2003/6(@)/0452014)/$20.00 67 045201-1 ©2003 The American Physical Society



RAPID COMMUNICATIONS

LEE et al. PHYSICAL REVIEW E 67, 045201R) (2003
N N . T ' | ' T : |
(b) _ B
@ 0.0005 -
- 4 5
g
L &
=
a4
L1 [ > 0
)
5
T 1 (cll) T T T = L
] >
P@®)| A
J -0.0005
0.5 7 ; 1 2 1 i 1 ; I ;
0.0 0.2 0.4 0.6 0.8 1.0
s ] €
oL—L 1 L1 | FIG. 2. Two largest transverse Lyapunov exponents whgn
L - =0.7 andw,=1.0. There are two transition poinfsandB.
e (rad.)
FIG. 1. PS ate=0.04 in coupled Rssler oscillators:x;= 2,=0.2+7,(x,— 10), @
—oy1—21, V1= wgX1+0.15/;,, z,=0.2+ zl(xl—lo),_ Xp.3= S
—w Y237 223, Y237 W Xp3t0.1655 5t €(Y1—Y29, 2,3=0.2 Xo =~ 0ryo 2t €(X1 7 X7),
+2, 4(Xp3—10), wherewy=1.015 andw,=1.0. (a) stroboscopic .
phase trajectoryblack dots of oscillator 1 with reference oscillator Vo= w,Xs+ 0.165/,,
3 [18]. Gray dots show the whole attractor of oscillator 1 without
stroboscopic sampling(c) Stroboscopic phase trajectorfplack 2,=0.2+2,(x,— 10), ®)

doty of oscillator 2 with reference oscillator 3b) and (d) are
robability distributions ofl@) and(c), respectively. -
p y fa) (c), resp Y. Xa=— Y3~ Za,
=arcsin(AwR,/eR;) where we ignore the effective noise - B
term ¢ because it is negligible in the PS regifi¥. Accord- Ys=orXat0.1655F e(y1—ys),
ingly, the onset solution of the fixed point és;, = /2 when
2AwRy/eRy=1. Thus the critical coupling can be estimated
by e~2Aw, sinceR;/R,~1 between slightly detuned sys- . .
tems[9]. Then the critical coupling for PS can be estimatedwhere the correlated signals andyl of oscillator 1 are fed .
- - N into oscillators 2 and 3, respectively. In real systems, noise
by e.=2Aw=2(wy— w,)=0.03.

Figure 1 shows the stroboscopic phase trajectories an%nd delay in propagating channel are unavoidable. Thus the

probability distributionsP (6, ,) of chaotic oscillators 1 and dbove system _models areal situation in thCh two r(,egponse
) - ; . . systems are driven by correlated signandx’ wherex’ is
2 just above the critical point with the reference oscillator

(see Ref[18] for our definitior). One can see that PS occurs a dlst_orted version .Of(' We propose the above system for
between oscillators 1 and [Eigs. 1@ and 1b)] as well as studying PS in unidirectionally coupled systems and its rela-

. . . tion to GS.
?Oizviegnzsg”gséstﬁ earp])?e[:fgzelgesﬁ C:Iéc) dﬁggtiﬁ)&] a?eg;zgl)?_ The difference dynamics between two response oscillators
— [ exp(6)P(6)d6=0]. This implies that the rotational sym- 1S given byAX=AAX+E(t) whereAX=x,—x3, A=((0,
metry on the projective attractor is broken due to PS transi— @r»~1),(«r,0.1650),(0,0-10)), and ==diage(x,
tion, which is the indisputable evidence of PS-11. Ac-  — X2)»— €(Y1—Y3),ZoX2— Z5X3). By iterating this dynamics,
cordingly, we understand that PS established in the responsg® can find transverse Lyapunov exponents describing the

response system is due to PS in the drive-response systef§lative motion of oscillators 2 and 3. In Fig. 2, we see two
. . Lo TR transition pointsA and B which, as we will see below, cor-
i.e., above the critical coupling1,=0 and ¢13=0 imply

; i ) ) respond to two different types of PS: namely, GP& a&nd
$23=0 in Eg. (1). In other words, PS in the drive-response ihe conventional PS a&.

system coincides with PS in the response-response system 1o phase difference between drive and response oscilla-

73=0.2+ 73(x3— 10), (4

when identical driving signals are used. tors is given by

Next, we consider two response $&ter oscillators driven
by the correlated signalsg; and y,, instead of identical b =Aw—B(6+. 0.)SiNd+ 7l 0.0 5
ones: d1x=Aw—B(01,0,)SiN 1+ 7 ( 01, 6), %)

] whereAw=wy— o,
X1= —wgY1~ 21,

ERl
. B(6,,6)==—=—0.15co$60,+ 6,),
y1= wgX;+0.165/;, (61,6 2 Ry §01% 61
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FIG. 3. GPS in Eqs(2)—(4) at e=0.2: (a) stroboscopic phase
trajectory (black dot$ of oscillator 1 with oscillator 3[18]; (c)
oscillator 1 with oscillator 2{e) oscillator 3 with oscillator 2{b),
(d), and(f) are probability distributions ofa), (c), and(e), respec-

FIG. 4. Temporal behaviors of drive and response oscillators in
the GPS regime whea=0.2: (a) X, andx,, (b) x; andxs, (c) X,

¢ andxs.
tively.
4(b)], intermittently. Finally, we remark that GPS is a phe-
B €(2k—5) Ry | nomenon characterized by PS in the response-response sys-
M 01,00=—— R—ksm(01+ 6)—(0.015 tem, and thus it is different from conventional P3.

In Fig. 5, we also observe that GPS appears when the

Z; . Z . responses are slightly detuned with frequencies of 1.0
R—lsmal—R—ksmek ' +0.005, and it destabilizes for frequencies of £@O1.

This implies that GPS is a real phenomenon that should be
We can see &dependent term im, (6, ,6,) which is due to  experimentally observablgl9], and the attractor deforma-
the driving by correlated signals from the drive oscillator intions observed in Figs.(8 and Se) seem to originate from
Egs.(2)—(4). We can obtain the critical point for PS transi- the driving signal of different natural frequency. The similar
tion which ise.= —2Aw=0.6, in accordance with the argu- phenomenon is often observed in unidirectionally coupled
ment of the former casfbelow Eq.(1)]. The drive and re-
sponse oscillators develop to a PS state at this critical value
and PS between oscillators 2 and 3 is induced above this
critical coupling. The critical value of the critical coupling
agrees with that of the transition point indicated by pdnt
(e~0.55). Thus we understand thBtcorresponds to con-
ventional PS transition point at which the three oscillators
develop to PS simultaneously.

We need to inspect the phenomenon at reference pgoint
which is described as crossing to the negative value in one of
the Lyapunov exponents. Figure 3 shows the trajectories in
phase space and probability distributions near reference point

—€)sin, cosh, +

(b

A. A PS state appears only in the response-response system 20

[Figs. 3e) and 3f)] without PS in the drive-response system 1oL 0.8

[because probability distributions are not localized in Figs. 0.6

3(a—d], which is different from the case of the reference y o P®) 04

point B. We call this phenomenon GPS on the analogy of GS -10 7 0.2

in which two state variables, andx; coverge to the same Br—— 10 SN EREEE
value. In GPS the phaseb and 65 are bounded by a con- X O(rad.)

stant. Figure 4 shows the temporal behaviors of each oscil-

lator at the same coupling strength as that of Fig. 3. We note F|G. 5. Appearance of GPS when two response oscillators are
that PS is established in oscillator 2 and 3 as the phases agightly detuned. The natural frequencies of response oscillators are
mostly matched in Fig. @), while phase slippings appear in w,=1.005(of oscillator 2 andw, =0.995(of oscillator 3, respec-
oscillators 1 and ZFig. 4@)] or oscillators 1 and 3Fig. tively. Others parameters are those of Fig. 3.
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systems with different dynamid4.3]. It was shown recently are correlatedbut not identicgl, PS is established in the
[9,10] that the phase defined by geometrical function likeresponse-response system but not in the drive-response sys-
ours and the phase based on the Hilbert transformation pratéem. We call this phenomenon GPS. The GPS state transits to

tically coincide. So we think our result is independent of thePS when coupling strength increases. The results are con-
method of defining the phase. firmed by the analysis of Lyapunov exponents, phase trajec-

In conclusion, we have studied PS in unidirectionallytories' and time series. We expect that the GPS concept could

coupled chaotic systems with parameter mismatch, and W?e used for analyzing weak interdependences of data coming

have focused upon clarifying the relationship of PS phenom!'o™ Weakly correlated systems such as neuronal systems
ena in the drivg—responfge gnd PS in the rpesponsg—respoA:sf’é’ cardiac oscillatorg20], and ecological systeni&1], etc.

systems. When the driving signals are identical, PS in the The authors thank J. Kurths, S.-Y. Lee, and M.S. Kur-
drive-response system corresponds to PS in the responsgoglyan for helpful discussions. This work was supported by
response system and the system develops to GS as the ca@reative Research Initiatives of the Korean Ministry of Sci-
pling strength increases: PSGS. When the driving signals ence and Technology.
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